Reg. No.									
----------	--	--	--	--	--	--	--	--	--

CH/AC/OC/CA H 403

I Semester M.Sc. Degree Examination, December 2018 CHEMISTRY/APPLIED CHEMISTRY/ORGANIC CHEMISTRY/ ANALYTICAL CHEMISTRY (CBCS : 2016 – 17 Syllabus) Physical Chemistry

Time: 3 Hours

Max. Marks: 70

 $(2 \times 9 = 18)$

Note : i) Answer Part – **A** and **any four** questions from Part – **B**. *ii*) Figures to the **right** indicate marks.

1. Answer **all** subdivisions.

- a) Differentiate between Arrhenius and van't Hoff intermediates in homogeneous catalysis.
- b) What are Bronsted relationships ? Explain their significance.
- c) Describe the effect of temperature and pressure on heterogeneous catalysis.
- d) State the steady state principle and mention its significance in the study of complex reactions.
- e) The reaction $H_2 + Br_2 \rightarrow 2$ HBr is a composite reaction. Justify.
- f) Predict with reasoning the effect of ionic strength on the rates of the following reactions :
 - i) Reaction between I^- and $S_2O_8^{2-}$ and
 - ii) Reaction between CH₃COOH and NaOH.
- g) Comment on the physical significance of Walden product.
- h) Sketch a polarogram and explain the importance of various regions.
- i) 'Process of corrosion of any material is always spontaneous in nature'. Justify the statement.

CH/AC/OC/CA H 403

PART – B

Ar	ารพ	er any four of the following questions. (4×13=5	2)
2.	a)	Discuss the protolytic and prototropic mechanisms of acid catalysis.	7
	b)	Discuss the kinetics of enzyme catalysed reactions and derive the Michaelis- Menten equation. Mention the different cases.	6
3.	a)	Derive the BET equation and explain its application for the determination of surface area.	6
	b)	The adsorption of nitrogen on $ZnSiO_4$ at liquid nitrogen temperature fits BET equation. The volume of nitrogen necessary to form a monolayer on the powdered sample weighing 17.52 g is found to be 11.05 cm ³ at STP. Calculate the surface area per gram of the power sample. One molecule of nitrogen occupies 16.2 (Å) ² .	4
	c)	Explain the p-type semiconductor catalysis with an example.	3
4.	a)	Discuss the kinetics of parallel reactions considering them as of first order.	6
	b)	Write the Hammett Equation and explain its importance in the study of kinetics of reactions. Show that it is equivalent to a linear free energy relationship.	3)
5.	a)	Discuss the effect of solvent on the rates of ionic reactions in solution based on the double sphere model.	6
	b)	Explain the collision theory of bimolecular reactions. Mention the merits and limitations of the theory.	7
6.	a)	Deduce an expression for the Debye-Huckel limiting law and write various forms of it.	6
	b)	Explain the significance of ionic atmosphere. Calculate the thickness of the ionic atmosphere of 0.02 M solution of a uni-univalent electrolyte in 70% ethanol solution in water at 25°C.	
		(D = 38.5, e = 1.602×10^{-19} C; K = 1.38×10^{-23} J.K ⁻¹ ; N = 6.023×10^{23} mol ⁻¹).	4
	c)	Explain the characteristics of Galvanic series and mention its limitations.	3
7.	a)	List the types of corrosion and discuss any three of them with illustrative examples.	6
	b)	Explain the role of inhibitors in reducing the rate of corrosion.	4
	c)	Outline the principle of cyclic voltammetry technique.	3